Graphical executive summary of research plans

New technologies for energy applications

<table>
<thead>
<tr>
<th>Solar Energy</th>
<th>Electricity Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universality of short-range order in organic photovoltaics?</td>
<td>Unusual electrostatic phenomena in nanoscale capacitors</td>
</tr>
</tbody>
</table>

synthetic

biological

Fact: thermal annealing in P3HT:PCBM film changes morphology short range order with nanosized domains size ~10 nm can be studied using

New cyberinfrastructure for microstate sampling and large scale quantum chemistry calculations

Fact: atomic force microscopy of photosynthetic membranes shows short range order with photosynthetic complexes of size ~7 nm and 12 nm can be studied using

New force fields for ground states and charge transfer excitations

Fact: Supercapacitors with nanostructured electrodes show anomalous increase in capacitance with pore sizes below 1 nm can be studied using

New computational models for charge transfer processes

- Surface morphology of electrode
- Structure of interfaces
- Structure of electric double layers
- Redox reactions at phase boundaries
- Solvation structure

Random matrix theory

Can be studied using

Detailed statistics on electrical and optical properties of disordered systems

Postdoc work

PhD work

Department of Chemistry

Massachusetts Institute of Technology

77 Massachusetts Avenue, Room 6–228

Cambridge, Massachusetts 02139-4301

Jiahao Chen

Email: jiahao@mit.edu

Telephone: (617) 721-5631

Fax: (617) 253-7030

Department of Chemistry
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 6–228
Cambridge, Massachusetts 02139-4301

Graphical executive summary of research plans

New technologies for energy applications

<table>
<thead>
<tr>
<th>Solar Energy</th>
<th>Electricity Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universality of short-range order in organic photovoltaics?</td>
<td>Unusual electrostatic phenomena in nanoscale capacitors</td>
</tr>
</tbody>
</table>

synthetic

biological

Fact: thermal annealing in P3HT:PCBM film changes morphology short range order with nanosized domains size ~10 nm can be studied using

New cyberinfrastructure for microstate sampling and large scale quantum chemistry calculations

Fact: atomic force microscopy of photosynthetic membranes shows short range order with photosynthetic complexes of size ~7 nm and 12 nm can be studied using

New force fields for ground states and charge transfer excitations

Fact: Supercapacitors with nanostructured electrodes show anomalous increase in capacitance with pore sizes below 1 nm can be studied using

New computational models for charge transfer processes

- Surface morphology of electrode
- Structure of interfaces
- Structure of electric double layers
- Redox reactions at phase boundaries
- Solvation structure

Random matrix theory

Can be studied using

Detailed statistics on electrical and optical properties of disordered systems

Postdoc work

PhD work

Department of Chemistry

Massachusetts Institute of Technology

77 Massachusetts Avenue, Room 6–228

Cambridge, Massachusetts 02139-4301

Jiahao Chen

Email: jiahao@mit.edu

Telephone: (617) 721-5631

Fax: (617) 253-7030

Department of Chemistry
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 6–228
Cambridge, Massachusetts 02139-4301

Graphical executive summary of research plans

New technologies for energy applications

<table>
<thead>
<tr>
<th>Solar Energy</th>
<th>Electricity Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universality of short-range order in organic photovoltaics?</td>
<td>Unusual electrostatic phenomena in nanoscale capacitors</td>
</tr>
</tbody>
</table>

synthetic

biological

Fact: thermal annealing in P3HT:PCBM film changes morphology short range order with nanosized domains size ~10 nm can be studied using

New cyberinfrastructure for microstate sampling and large scale quantum chemistry calculations

Fact: atomic force microscopy of photosynthetic membranes shows short range order with photosynthetic complexes of size ~7 nm and 12 nm can be studied using

New force fields for ground states and charge transfer excitations

Fact: Supercapacitors with nanostructured electrodes show anomalous increase in capacitance with pore sizes below 1 nm can be studied using

New computational models for charge transfer processes

- Surface morphology of electrode
- Structure of interfaces
- Structure of electric double layers
- Redox reactions at phase boundaries
- Solvation structure

Random matrix theory

Can be studied using

Detailed statistics on electrical and optical properties of disordered systems

Postdoc work

PhD work

Department of Chemistry

Massachusetts Institute of Technology

77 Massachusetts Avenue, Room 6–228

Cambridge, Massachusetts 02139-4301

Jiahao Chen

Email: jiahao@mit.edu

Telephone: (617) 721-5631

Fax: (617) 253-7030

Department of Chemistry
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 6–228
Cambridge, Massachusetts 02139-4301

Graphical executive summary of research plans

New technologies for energy applications

<table>
<thead>
<tr>
<th>Solar Energy</th>
<th>Electricity Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universality of short-range order in organic photovoltaics?</td>
<td>Unusual electrostatic phenomena in nanoscale capacitors</td>
</tr>
</tbody>
</table>

synthetic

biological

Fact: thermal annealing in P3HT:PCBM film changes morphology short range order with nanosized domains size ~10 nm can be studied using

New cyberinfrastructure for microstate sampling and large scale quantum chemistry calculations

Fact: atomic force microscopy of photosynthetic membranes shows short range order with photosynthetic complexes of size ~7 nm and 12 nm can be studied using

New force fields for ground states and charge transfer excitations

Fact: Supercapacitors with nanostructured electrodes show anomalous increase in capacitance with pore sizes below 1 nm can be studied using

New computational models for charge transfer processes

- Surface morphology of electrode
- Structure of interfaces
- Structure of electric double layers
- Redox reactions at phase boundaries
- Solvation structure

Random matrix theory

Can be studied using

Detailed statistics on electrical and optical properties of disordered systems

Postdoc work

PhD work

Department of Chemistry

Massachusetts Institute of Technology

77 Massachusetts Avenue, Room 6–228

Cambridge, Massachusetts 02139-4301

Jiahao Chen

Email: jiahao@mit.edu

Telephone: (617) 721-5631

Fax: (617) 253-7030

Department of Chemistry
Massachusetts Institute of Technology
77 Massachusetts Avenue, Room 6–228
Cambridge, Massachusetts 02139-4301

Graphical executive summary of research plans

New technologies for energy applications

<table>
<thead>
<tr>
<th>Solar Energy</th>
<th>Electricity Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universality of short-range order in organic photovoltaics?</td>
<td>Unusual electrostatic phenomena in nanoscale capacitors</td>
</tr>
</tbody>
</table>

synthetic

biological

Fact: thermal annealing in P3HT:PCBM film changes morphology short range order with nanosized domains size ~10 nm can be studied using

New cyberinfrastructure for microstate sampling and large scale quantum chemistry calculations

Fact: atomic force microscopy of photosynthetic membranes shows short range order with photosynthetic complexes of size ~7 nm and 12 nm can be studied using

New force fields for ground states and charge transfer excitations

Fact: Supercapacitors with nanostructured electrodes show anomalous increase in capacitance with pore sizes below 1 nm can be studied using

New computational models for charge transfer processes

- Surface morphology of electrode
- Structure of interfaces
- Structure of electric double layers
- Redox reactions at phase boundaries
- Solvation structure

Random matrix theory

Can be studied using

Detailed statistics on electrical and optical properties of disordered systems